
APPLICATION PROGRAM INTERFACE

INTRODUCTION

This Application Program Interface (API) provides implementation details for adding related
hierarchical levels to military shipping label data streams. Adding these hierarchical levels
and their relationships enable the user to build a multi-tiered consolidated shipment and to
maintain a description of the contents at each hierarchical level. The hierarchical levels and
their relationships are in the format of the ‘F’ data identifier described in Section VI of the
Data Application Identifier Standard ANSI MH10.8.2:1995 (R2002) document. This API
provides implementation details for both creating and reading data streams with ‘F’ data
identifiers.

The user of this API creates a multi-tiered shipment one level at a time. Starting at the lowest
level, the user inputs into the API the level being built, and one or more data streams
representing shipping data for that level. The output of the API is a single data stream
representing all the data combined for that level. This output in turn can be used as a data
stream to be included in the next higher hierarchical level of a shipment. Note that shipments
do not have to include every hierarchical level, but the user must build the shipment in the
proper order of hierarchical levels, starting with the lowest. For example, a shipment might
not contain an ‘Order’ level, but if it does, the ‘Order’ level must be created before the
‘Shipment’ level. Table 1 shows the proper order of the hierarchical levels, with ‘Shipment’
as the highest level and ‘Serial #’ the lowest. None of the levels are mandatory.

This API also reads the multi-level shipment data stream that it previously created. In this
instance the user inputs a data stream representing all or part of a consolidated shipment.
The API outputs a single data stream containing the data streams that were used to create that
shipment level, without the top-level ‘F’ data identifiers. For example, a user may request
the API to read a ‘Pack’ data stream. The API would output the data streams used to create
that Pack, without the Pack ‘F’ data identifier.

Table 1 – ‘F’ Data Identifier Hierarchical Level Codes

Level Identifier Description
Shipment S Data that applies to the whole shipment, such as bill of

lading number, lading quantity, supplier code, etc.
Order O Data related to the sender's order and the associated

receiver's original purchase order.
Tare T The tare level is used to identify pallets. If there are no

identifiable pallets, this level may be omitted.
Pack P The pack level is used to identify the cartons within

which the item is shipped, e.g., label serial numbers. In
most cases there will be some sort of packs.

Sub-pack Q Data related to a grouping of identifiable packages within
the pack level. Note that this level is only used when the

June 18, 2002

inner pack has identifiable numbers for each inner pack.
Item I Stock keeping unit (SKU) identification data.
Component F Data related to the manufacturer’s component
Serial # X Data related to the manufacturer’s serial number

The ‘Shipment’ level is unique in that complete shipments can be combined into another
shipment. For example, a user in Florida may create an entire shipment, including a
‘Shipment’ level ‘F’ data identifier, and send it to New York. A user in California may also
create a similar entire shipment and send it to the same person in New York. The New York
user may want to combine those 2 shipments into 1 shipment and send it overseas. Allowing
the ‘Shipment’ hierarchical level to be subordinate to itself provides for this capability. This
capability is not allowed at any other hierarchical level.

ASSUMPTIONS AND DEFINITIONS

This document assumes input data streams with the following characteristics:
1. The data stream begins with the Compliance Indicator of ‘[)>’ as the first 3 characters.
2. The data stream ends with the End of Transaction character ‘EoT’. ‘EoT’ is counted as a
single character in this API.
3. The data element separator ‘G

S’ may be used throughout the data streams. ‘G
S’ is counted

as a single character in this API.
4. The format trailer separator ‘R

S’ may be used throughout the data streams. ‘R
S’ is counted

as a single character in this API.

A sequence of characters unique to the API is needed to mark the end of the original data
streams that were combined into a single data stream to build the output of the API. A
combination of the file separator FS and the plus sign is used for this purpose. ‘F

S+’ in this
API is a 2-character string that indicates the original end of a data stream.

This document defines an ‘F’ data identifier as being a string or partial data stream of length
8 or 9, beginning with the capital letter ‘F’ and ending with the data element separator GS.
See Table 2 for the ‘F’ data identifier format. All fields are mandatory and are defined as
follows:

Hierarchical ID Number – a unique identifying alpha-numeric string of length 2. Answers
the question “Who am I?”.

Hierarchical Parent ID Number – the Hierarchical ID Number of the parent ‘F’ data
identifier. Answers the question “Who is my parent?”.

Hierarchical Child Code – an indicator of the existence of hierarchical levels beneath this ‘F’
data identifier. 1=yes, 0=no. Answers the question “Am I a parent?”.

June 18, 2002 2

Hierarchical Level Code – a variable-length field of 1-2 characters indicating the level of the
‘F’ data identifier. Answers the question “What am I?”. Note all of the hierarchical level
codes in Table 1 are of length 1, but this format leaves open the possibility for 2-character
hierarchical level codes.

Table 2– ANSI MH10.8.2 Data Identifier “F” Structure

Part String (AN) or
Identifier (ID)

Length

Hierarchical ID Number AN 2
Hierarchical Parent ID Number AN 2
Hierarchical Child Code ID 1
Hierarchical Level Code ID 1/2

NOMENCLATURE

For purposes of this API, logic is written in pseudo PL/SQL code with the following symbol
definitions:

‘--‘ comments
 ‘||’ string concatenation
‘=’ equality comparison
‘<>’ inequality comparison
‘:=’ assignment operator

Standard PL/SQL functions used in this API are listed here with their specifications for
clarity:

FUNCTION SUBSTR (string_in IN VARCHAR2,
 start_position_in IN NUMBER,
 substr_length_in IN NUMBER) RETURN VARCHAR2;
This function returns a substring. ‘String_in’ is the source string, ‘start_position_in’ is the
starting position of the substring to be returned, ‘substr_length_in’ is the length of the
substring. The last parameter is optional. If it is not present, the function returns all the
characters to the end of string_in. Strings in PL/SQL start with position 1.

FUNCTION REPLACE (string1 IN VARCHAR2,
 match_string IN VARCHAR2,
 replace_string IN VARCHAR2) RETURN VARCHAR2;
This function returns a string in which all occurrences of ‘match_string’ in ‘string1’ are
replaced with ‘replace_string’. The last parameter is optional. If it is not present, the
function removes all occurrences of match_string from string1 and returns the resulting
string.

June 18, 2002 3

FUNCTION LENGTH (string1 IN VARCHAR2) RETURN VARCHAR2;
This function returns the length of string1.

FUNCTION ASCII (single_character IN VARCHAR2) RETURN NUMBER;
This function returns the decimal equivalent of a character in the ASCII character set.

FUNCTION CHR (code_location IN NUMBER) RETURN VARCHAR2;
This function returns the character equivalent of a decimal number in the ASCII character
set.

CONSTANTS

The following constants define the eight ‘F’ data identifier hierarchical level codes used in
this API:

Shipment String := ‘S’;
Order String := ‘O’;
Tare String := ‘T’;
Pack String := ‘P’;
SubPack String := ‘Q’;
Item String := ‘I’;
Component String := ‘F’;
SerialNumber String := ‘X’;

SUBROUTINES

FUNCTION MAIN

Purpose: This function is the main driver of the API. It builds a data stream of one or
more shipping labels based on user input.

Description: This function accepts the user’s request to build or read an ‘F’ data identifier
data stream. If the request is to build an ‘F’ data identifier data stream, this function gets the
hierarchical level the user is building, processes one or more input data streams from the
user, builds a single data stream with the appropriate ‘F’ data identifiers added, then returns
the new data stream. If the request is to read an ‘F’ data identifier data stream, this function
breaks down a single data stream with ‘F’ data identifiers into the individual data streams
from which it originated, and returns those data streams to the user in a single data stream.

Parameters:
None.

June 18, 2002 4

Global Variables:

OutputStream Data Stream --this is the output of the API
PrevHL String representing the most recent hierarchical level processed
PrevFStr String to store the most recent ‘F’ data identifier processed

Local Variables:

InputRequest String representing user’s requested action. For purposes of this API,

values will be either ‘Build_F_Data’ or ‘Read_F_Data’
InputHL String representing the ‘F’ data identifier hierarchical level that the

user is currently building. Not used if InputRequest is
‘Read_F_Data’.

InputLabel User input data stream. This may be a bar code scan or a data stream
from some other source.

Return Values:
Data stream

Logic:

BEGIN MAIN
 --Ask user whether he or she wants to build a shipment or read a shipment.
 Get InputRequest from user;

 If InputRequest = ‘Build_F_Data’
 --User asked to build a shipment label.

 --Ask user what hierarchical level he or she is building.
 Get InputHL from user;

 LOOP
 -- Ask user to input data streams to be included at this level.
 -- Tell user what to input when he or she is finished (this will be the
 -- Done_Indicator).
 Get InputLabel from user;

 EXIT WHEN InputLabel = Done_Indicator;

 Build_Label(InputLabel, InputHL);
 END LOOP;

 OutputStream := OutputStream || ‘EoT’

 Else If InputRequest = ‘Read_F_Data’
 --User asked to read a shipment label.

June 18, 2002 5

 -- Ask user to scan label to be read.
 Get InputLabel from user;

 Read_Label(InputLabel);

 End If;

 Return OutputStream;

END MAIN;

Exceptions:

Invalid_Bar_Code Raise if InputLabel is unreadable.

PROCEDURE BUILD_LABEL

Purpose: This procedure builds an ‘F’ data identifier data stream and stores it in the
OutputStream variable.

Description: This procedure accepts a data stream and a hierarchical level as input, converts
the data stream to a data stream with the appropriate ‘F’ data identifiers and adds the result to
the OutputStream variable. This procedure is called repeatedly from Function Main as long
as the user is entering data streams. The last call to this procedure results in a single data
stream of all input data streams, including ‘F’ data identifiers, being stored in the
OuputStream variable.

Parameters:
UserLabel Data stream input by the user. This may be a bar code scan, a manual

entry, or a data stream created by another system.

TopHLevel String representing the ‘F’ data identifier hierarchical level that the

user is currently building.

Local Variables:

CurrentHL String representing current hierarchical level in loop
TmpStr String to store a data element read from UserLabel
FStr String to store a single new ‘F’ data identifier
Prev_Higher_FStr String to store last ‘F’ data identifier in OutputStream with next higher

hierarchical level
F_Id_Num 2 character string representing ‘F’ data identifier id number
F_Par_Num 2 character string representing parent id for ‘F’ data identifier
HasKids Boolean to represent if ‘F’ data identifier has levels below it

0 = no, 1 = yes

June 18, 2002 6

Return Values:
None.

Logic:

BEGIN BUILD_LABEL
 IF OutputStream is empty THEN
 -- this is the first label for OutputStream, so insert the 1st ‘F’ data identifier

 -- Read characters from UserLabel until ‘[)>’ is read
 -- Raise error if the 1st 3 characters are not ‘[)>’.
 TmpStr := data element from UserLabel;

 OutputStream := TmpStr || ‘R

S’ || ‘06’ || ‘G
S’;

 F_ID_Num := ‘01’;
 F_Par_Num := ‘00’;
 FStr := ‘F’ || F_ID_Num || F_Par_Num || ‘0’ || TopHLevel || ‘G

S’;
 OutputStream := OutputStream || FStr;
 PrevFStr := FStr;
 PrevHL := TopHLevel;

 END IF;

 -- Read characters from UserLabel until a ‘G

S’, or ‘EoT’ is read
 TmpStr := next data element from UserLabel ;

 LOOP

 EXIT WHEN SUBSTR(TmpStr, LENGTH(TmpStr), 1) = ‘EoT’ OR TmpStr IS NULL;

 IF SUBSTR(TmpStr,1,1) = ‘F’ AND (LENGTH(TmpStr) = 8 OR LENGTH(TmpStr)

= 9) THEN
 -- If TmpStr starts with an ‘F’ and is of length 8 or 9 (counting the GS) then
 -- this is an ‘F’ data identifier

 HasKids := SUBSTR(TmpStr,6,1);

 IF LENGTH(TmpStr) = 9 THEN
 CurrentHL := SUBSTR(TmpStr,7,2);
 ELSE
 CurrentHL := SUBSTR(TmpStr,7,1);
 END IF;

 IF Hierarchy_Level_Is_Lower(CurrentHL, PrevHL) THEN
 -- the current hierarchical level is lower than the previous one.

June 18, 2002 7

-- Change character 6 of the last F data in OutputStream to show kids
-- (set to 1 regardless of its previous value).

 -- Below code uses PL/SQL’s REPLACE function
 FStr := SUBSTR(PrevFStr, 1, 5) || ‘1’ || SUBSTR(PrevFStr, 7);
 REPLACE(OutputStream, PrevFStr, FStr);

 F_Id_Num := SUBSTR(PrevFStr,2,2);
 F_Par_Num := F_Id_Num;
 FStr := ‘F’ || Increment_ID(F_Id_Num) || F_Par_Num || HasKids || CurrentHL ||

‘G
S’;

 OutputStream := OutputStream || FStr;

 ELSEIF CurrentHL = PrevHL THEN

 If HasKids = 1 THEN

 F_Id_Num := SUBSTR(PrevFStr,2,2);
 F_Par_Num := SUBSTR(PrevFStr,4,2);

 IF F_Par_Num = ‘00’ THEN
 F_Par_Num := ‘01’;
 END IF;

 FStr := ‘F’ || Increment_ID(F_Id_Num) || F_Par_Num || HasKids ||

CurrentHL || ‘G
S’;

 OutputStream := OutputStream || FStr;

 ELSE
 --this F identifier is the same level as the last one and has no levels
 --beneath it, so it can be eliminated. Don’t add it to OutputStream.
 --Also remove the ‘R

S06G
S’ that preceded it from the end of

 --OutputStream.
 OutputStream := SUBSTR(OutputStream,1,LENGTH(OutputStream)-4);
 END IF;

 ELSEIF NOT Hierarchy_Level_Is_Lower(CurrentHL, PrevHL) THEN
 -- the current hierarchical level is higher than the previous one

 Prev_Higher_FStr := LAST_F_DATA_WITH_HIGHER_HL(CurrentHL);

 -- Change character 6 of the last F data in OutputStream with the next higher
 -- hierarchical level to show kids (set to 1).
 -- Below code uses PL/SQL’s REPLACE function.
 FStr := SUBSTR(Prev_Higher_FStr, 1, 5) || ‘1’ ||

SUBSTR(Prev_Higher_FStr, 7);

June 18, 2002 8

 REPLACE(OutputStream, Prev_Higher_FStr, FStr);

 F_Par_Num := SUBSTR(Prev_Higher_FStr,2,2);

 --Get the id of the last F data in OutputStream (at whatever level).
 F_Id_Num := SUBSTR(PrevFStr,2,2);

 FStr := ‘F’ || Increment_ID(F_Id_Num) || F_Par_Num || HasKids ||

CurrentHL || ‘G
S’;

 OutputStream := OutputStream || FStr;

 END IF -- hierarchical level comparison

 PrevFStr := FStr;
 PrevHL := CurrentHL;

 -- read characters from UserLabel until ‘G

S’, or ‘EoT’ is read
 TmpStr := next data element from UserLabel ;

 ELSEIF SUBSTR(TmpStr,1,3) = ‘[)>’ AND PrevHL <> TopHLevel THEN
 -- TmpStr starts with a compliance indicator. Get next data element
 -- from UserLabel until a ‘G

S’, or ‘EoT’ is read.
 TmpStr2 := next data element from UserLabel ;

 -- check to see if it is ‘F’ data identifier.
 IF SUBSTR(TmpStr2,1,1) = ‘F’ AND (LENGTH(TmpStr2) = 8 OR

LENGTH(TmpStr2) = 9) THEN

 -- TmpStr2 is an ‘F’ data identifier. Take the compliance indicator off of
 -- TmpStr, append it to OutputStream and put TmpStr2 back into TmpStr
 -- for the next iteration of the loop.
 OutputStream := OutputStream || SUBSTR(TmpStr,4);
 TmpStr := TmpStr2;

 ELSE
 -- This is not an ‘F’ data identifier. It is a single object to be packed at the
 -- user input hierarchical level.

 -- Strip out the compliance indicator and recombine the 1st 2 data elements.
 TmpStr := SUBSTR(TmpStr,4) || TmpStr2;

 IF TmpStr2 does not end in EoT THEN
 -- Read the rest of the label and put all of the data into TmpStr.
 TmpStr2 := next data elements from UserLabel until EoT is read;
 TmpStr := TmpStr || TmpStr2;

June 18, 2002 9

 END IF;

 -- Replace the ‘EoT’ with ‘F

S+’.
 TmpStr := REPLACE(TmpStr, ‘EoT’, ‘F

S+’);

 --Insert the label into OutputStream after the first ‘F’ top level data identifier
 -- but before any previously scanned ‘F’ data identifier to preserve the
 -- hierarchical sequence in OutputStream.

 IF LENGTH(TopHLevel) = 1 THEN
 OutputStream := SUBSTR(OutputStream,1,15) || TmpStr ||

SUBSTR(OutputStream,16);
 ELSE --TopHLevel is of length 2
 OutputStream := SUBSTR(OutputStream,1,16) || TmpStr ||

SUBSTR(OutputStream,17);
 END IF;

 TmpStr := NULL;

 END IF;

 ELSEIF SUBSTR(TmpStr,1,3) = ‘[)>’ AND PrevHL = TopHLevel THEN
 -- Strip out the compliance indicator and continue processing.
 TmpStr := REPLACE(TmpStr, ‘[)>’);

 ELSE
 -- TmpStr is not ‘F’ identifier data or a data element with

-- a compliance indicator, so write it out to OutputStream.
 OutputStream := OutputStream || TmpStr;

 -- read characters from UserLabel until a ‘G

S’, or ‘EoT’ is read.
 TmpStr := next data element from UserLabel ;

 END IF; -- TmpStr evaluation

 END LOOP;

 -- This is the end of UserLabel.
 IF TmpStr IS NOT NULL THEN

 -- Raise Incorrect_Format error if TmpStr doesn’t end in ‘EoT’.
 -- Strip out any remaining compliance indicator, and replace the ‘EoT’ with ‘F

S+’.
 TmpStr := REPLACE (TmpStr, ‘[)>’);
 TmpStr := REPLACE (TmpStr, ‘EoT’, ‘F

S+’);
 OutputStream := OutputStream || TmpStr;
 END IF;

June 18, 2002 10

END BUILD_LABEL;

Exceptions:

Incorrect_Format Raise if UserLabel does not begin ‘[)>’ and end ‘EoT’.

FUNCTION HIERARCHY_LEVEL_IS_LOWER

Purpose: This function determines which of two given ‘F’ data identifier hierarchical
levels is the lower.

Description: This function accepts two ‘F’ data identifier hierarchical levels as parameters
and determines if the first hierarchical level is lower than the second. Possible hierarchical
levels are ‘S’,’O’,’T’,’P’,’Q’,’I’,’F’,’X’ and they are ranked from high to low in this order
with ‘S’ being the highest level and ‘X’ being the lowest. This function returns a Boolean
value of TRUE if the first parameter is lower in the ranking than the second parameter. It
returns FALSE if the first parameter is greater than or equal to the second parameter.

Parameters:
HL1 String representing an ‘F’ data identifier hierarchical level
HL2 String representing an ‘F’ data identifier hierarchical level

Local Variables:
None.

Return Values:
Boolean

Logic:

BEGIN HIERARCHY_LEVEL_IS_LOWER
 -- This logic uses the constants defined on page 4.
 IF HL1 = Shipment THEN
 Return FALSE;

 ELSEIF HL1 = Order THEN
 IF HL2 = Shipment THEN
 Return TRUE;
 ELSE
 Return FALSE;
 END IF;

 ELSEIF HL1 = Tare THEN
 IF HL2 IN (Shipment,Order) THEN

June 18, 2002 11

 Return TRUE;
 ELSE
 Return FALSE;
 END IF;

 ELSEIF HL1 = Pack THEN
 IF HL2 IN (Shipment,Order,Tare) THEN
 Return TRUE;
 ELSE
 Return FALSE;
 END IF;

 ELSEIF HL1 = SubPack THEN
 IF HL2 IN (Shipment,Order,Tare,Pack) THEN
 Return TRUE;
 ELSE
 Return FALSE;
 END IF;

 ELSEIF HL1 = Item THEN
 IF HL2 IN (Shipment,Order,Tare,Pack,SubPack) THEN
 Return TRUE;
 ELSE
 Return FALSE;
 END IF;

 ELSEIF HL1 = Component THEN
 IF HL2 IN (Shipment,Order,Tare,Pack,SubPack,Item) THEN
 Return TRUE;
 ELSE
 Return FALSE;
 END IF;

 ELSEIF HL1 = SerialNumber THEN
 IF HL2 IN (Shipment,Order,Tare,Pack,SubPack,Item,Component) THEN
 Return TRUE;
 ELSE
 Return FALSE;
 END IF;
 END IF;

END HIERARCHY_LEVEL_IS_LOWER;

Related Information:
This function is called by BUILD_LABEL.

June 18, 2002 12

FUNCTION INCREMENT_ID

Purpose: This function increments a 2-character ‘F’ data identifier Id.

Description: This function accepts a 2-character ‘F’ data identifier Id as a parameter and
returns the next higher incremented 2-character Id value. This 2-character Id is
alphanumeric, making 1,296 unique identifiers possible. Though it is only necessary that
each identifier be unique and order is not important in assigning these values, for
readability’s sake this 2-character Id will be assigned first using numeric combinations, then
numeric-alpha combinations, then alpha-numeric combinations, and finally alphabetic
combinations. See Table 3 for examples. Note ‘00’ will not be used as an Id. This value is
reserved to represent ‘no parent’ in the ‘F’ data identifier Parent Id numbers.

Table 3 – Assignment Order of ‘F’ Data Identifier Id’s
Order Field Type Field Range Possible

Permutations
1 Numeric 01…99 99
2 Numeric Alpha 0A…9Z 260
3 Alpha Numeric A0…Z9 260
4 Alphabetic AA…ZZ 676

Parameters:
CurrentId 2-character string representing an ‘F’ data identifier Id

Local Variables:
Column1 1st character of CurrentId
Column2 2nd character of CurrentId
NewId 2-character string representing an ‘F’ data identifier Id

Return Values:
2-character string representing the next ‘F’ data identifier Id after CurrentId

Logic:

BEGIN INCREMENT_ID

 IF CurrentId = ‘99’ THEN
 Return ‘0A’
 ELSEIF CurrentId = ‘9Z’ THEN
 Return ‘A0’
 ELSEIF CurrentId = ‘Z9’ THEN
 Return ‘AA’
 ELSE
 Column1 := 1st character of CurrentId;

June 18, 2002 13

 Column2 := 2nd character of CurrentId;
 IF Column2 = ‘9’ OR Column2 = ‘Z’ THEN
 Column1 := NEXT_VALUE(Column1);
 END IF;
 Column2 := NEXT_VALUE(Column2);
 NewId := Column1 || Column2;
 Return NewId;
 END IF;

END INCREMENT_ID;

Related Information:
This function calls the function NEXT_VALUE detailed below.

FUNCTION NEXT_VALUE

Purpose: This function increments a single character of the 2-character ‘F’ data identifier
Id.

Description: This function accepts a single character of the 2-character ‘F’ data identifier Id
as a parameter and returns the next higher incremented character value.

Parameters:
IdChar Character representing a character in the ‘F’ data identifier Id

Local Variables:
DecEquiv Number to store the decimal equivalent of IdChar

Return Values:
Single Character representing next higher value of IdChar

Logic:

BEGIN NEXT_VALUE

 IF IdChar = ‘9’ THEN
 Return ‘0’
 ELSEIF IdChar = ‘Z’ THEN
 Return ‘A’
 ELSE
 --Convert the input parameter ascii character to its decimal equivalent.
 --The below code uses a PL/SQL built-in function called ASCII to do this.
 DecEquiv := ASCII(IdChar);

 --Increment the decimal value by 1

June 18, 2002 14

 DecEquiv := DecEquiv + 1;

 --Convert the incremented value back to a character and return this value.
 --Below code uses the PL/SQL built-in CHR function.
 Return CHR(DecEquiv);

 END IF;

END NEXT_VALUE;

Related Information:

This function is called only by the INCREMENT_ID function.

FUNCTION LAST_F_DATA_WITH_HIGHER_HL

Purpose: This function finds and returns the last ‘F’ data identifier written to the
OutputStream that has a higher hierarchical level than the parameter hierarchical level.

Description: This function accepts an ‘F’ data identifier hierarchical level as a parameter
and locates the last ‘F’ data identifier in the OutputStream with the next higher hierarchical
level. Note the function searches the OutputStream starting at the end and works backwards.
For example: If the input parameter is Pack, this function starts at the end of OutputStream
and searches for an ‘F’ data identifier that has a hierarchical level higher than Pack, such as
Shipment, Order, or Tare. This function returns the first ‘F’ data identifier it finds with a
higher level. Since the search started at the end of OutputStream, this would also be the last
‘F’ data identifier that was written to OutputStream with a higher level. If the parameter ‘F’
data identifier hierarchical level is the highest one, ‘Shipment’, the 1st ‘F’ data identifier in
OutputStream is returned. If no ‘F’ data identifier is found, then empty string is returned.

Parameters:
TargetHL String representing a hierarchical level in an ‘F’ data identifier

Local Variables:
TmpHL String to store a potential hierarchical level
TmpChr String to temporarily store a character of OutputStream
Ctr Loop counter
StartSrch Numeric location where search of OutputStream will begin

Return Values:
String representing an ‘F’ data identifier

Logic:

June 18, 2002 15

BEGIN LAST_F_DATA_WITH_HIGHER_HL

 IF TargetHL = Shipment THEN
 --Return the first and top-level ‘F’ data identifier in OutputStream.
 --Raise an error if this isn’t also a shipment level ‘F’ data identifier.

 IF SUBSTR(OutputStream, 15, 1) = ‘G

S’ THEN
 --The top level ‘F’ data identifier is of length 8
 RETURN SUBSTR(OutputStream, 8, 8);
 ELSEIF SUBSTR(OutputStream, 16, 1) = ‘G

S’ THEN
 --The top level ‘F’ data identifier is of length 9
 RETURN SUBSTR(OutputStream, 8, 9);
 END IF;

 END IF;

 --For TargetHL’s lower than Shipment, start at the last possible position
 --of an ‘F’ data identifier in OutputStream
 StartSrch := LENGTH(OutputStream) – 8;

 -- loop counter starts at StartSrch value and counts backward to 1.
 FOR Ctr IN REVERSE 1 .. StartSrch
 LOOP

 -- get the next character from OutputStream
 TmpChr := SUBSTR(OutputStream, Ctr, 1);

 IF TmpChr = ‘F’ THEN

 IF SUBSTR(OutputStream, Ctr+7, 1) = ‘G

S’ THEN

 -- This is an ‘F’ data identifier of length 8.
 -- Get the hierarchical level of this ‘F’ data identifier.
 TmpHL := SUBSTR(OutputStream, Ctr+6, 1);

 IF Hierarchy_Level_Is_Lower(TargetHL, TmpHL) THEN

 --The parameter hierarchical level is lower than the hierarchical level
 -- for this ‘F’ data identifier, so return its value to the calling program.

 Return SUBSTR(OutputStream, Ctr, 8);
 END IF;

 ELSEIF SUBSTR(OutputStream, Ctr+8, 1) = ‘G

S’ THEN

 -- This is an ‘F’ data identifier of length 9.
 -- Get the hierarchical level of this ‘F’ data identifier.
 TmpHL := SUBSTR(OutputStream, Ctr+6, 2);

June 18, 2002 16

 IF Hierarchy_Level_Is_Lower(TargetHL, TmpHL) THEN

 --The parameter hierarchical level is lower than the hierarchical level
 -- for this ‘F’ data identifier, so return its value to the calling program.

 Return SUBSTR(OutputStream, Ctr, 9);
 END IF;

 END IF;

 END IF;

 END LOOP;

 -- no ‘F’ data identifier was found so return an empty string
 RETURN ‘‘;

END LAST_F_DATA_WITH_HIGHER_HL;

Related Information:

This function is called by the BUILD_LABEL function.

PROCEDURE READ_LABEL

Purpose: This procedure reads an ‘F’ data identifier data stream and returns the original
data streams that were used to create it.

Description: This procedure accepts a data stream as a parameter, breaks it down into the
original data streams before the ‘F’ data identifiers were inserted and appends the resulting
data streams to the OutputStream variable. At the end of this procedure, the OutputStream
variable will consist of consecutive data stream labels with each label beginning with ‘[)>’
and ending with ‘EoT’.

Parameters:
UserLabel Data stream representing shipping label with ‘F’ data identifiers

Local Variables:

TmpStr String to store a data element read from UserLabel
PrevLastChr String to store the last character previously processed
CurrLevel String to store the current hierarchical level
HighestLevel String to store the highest hierarchical level in UserLabel
ParentId String to store a 2-character parent hierarchical level id

Return Values:

June 18, 2002 17

None.

Logic:

BEGIN READ_LABEL
 -- Start the ouput label with the compliance indicator.
 OutputStream := ‘[)>’;

 -- Read characters from UserLabel until ‘G

S’ is read.
 -- Raise error if this string is not ‘[)>R

S06G
S’ .

 TmpStr := data element from UserLabel ;

 -- Read characters from UserLabel again until ‘G

S’ is read.
 -- Raise error if this string is not an ‘F’ data identifier, but do not add to OutputStream.
 TmpStr := data element from UserLabel ;

 IF LENGTH(TmpStr) = 9 THEN
 HighestLevel := SUBSTR(TmpStr,7,2);
 ELSE
 HighestLevel := SUBSTR(TmpStr,7,1);
 END IF;

 CurrLevel := HighestLevel;
 PrevLastChr := ‘[)>’;

 LOOP

 -- read characters from UserLabel until a ‘G

S’, ‘F
S+’, or ‘EoT’ is read

 TmpStr := next data element from UserLabel;

 EXIT WHEN TmpStr = ‘EoT’;

 IF PrevLastChr = ‘EoT’ THEN
 -- Add compliance indicator to start the next label.
 OutputStream := OutputStream || ‘[)>’
 END IF;

 IF SUBSTR(TmpStr, LENGTH(TmpStr)-1, 2) = ‘F

S+’ AND CurrLevel = HighestLevel
THEN

 -- This marks the end of the original label so substitute ‘EoT’ for ‘F
S+’.

 -- Note that this is the opposite of what BUILD_LABEL does.
 TmpStr := REPLACE(TmpStr, ‘F

S+’, ‘EoT’);
 OutputStream := OutputStream || TmpStr;
 PrevLastChr := ‘EoT’;

June 18, 2002 18

 ELSEIF SUBSTR(TmpStr,1,1) = ‘F’ AND (LENGTH(TmpStr) = 8 OR
LENGTH(TmpStr) = 9) THEN

 -- IF TmpStr starts with an ‘F’ and is of length 8 or 9 (counting the GS) then
 -- this is an ‘F’ data identifier
 IF LENGTH(TmpStr) = 9 THEN
 -- Get 2-character hierarchical level starting at position 7.
 CurrLevel := SUBSTR(TmpStr,7,2)
 ELSE
 -- Get 1-character hierarchical level starting at position 7.
 CurrLevel := SUBSTR(TmpStr,7,1)
 END IF;

 -- Get the id for this ‘F’ data identifier’s parent.
 ParentId := SUBSTR(Tmpstr,4,2);

 IF ParentId = ‘01’ THEN
 --This ‘F’ data identifier has the highest ‘F’ data identifier as a parent.
 --Since that parent has been removed, this ‘F’data identifier will now be the
 -- highest hierarchical level for a new data stream. Change parent id to ‘00’.

 TmpStr := SUBSTR(TmpStr,1,3) || ‘00’ || SUBSTR(TmpStr,6);

 IF SUBSTR(OutputStream, LENGTH(OutputStream)-5, 6) = ‘F

S+ R
S06G

S’
THEN

 -- Take off the ‘F
S+ R

S06G
S’ that was written to OutputStream in the last loop

iteration.
 OutputStream := SUBSTR(OutputStream, 1, LENGTH(OutputStream) – 6);

 -- Adjust TmpStr to show start of a new data stream.
 TmpStr := ‘EoT’ || ‘[)>’ || ‘R

S06G
S’ || TmpStr;

 END IF;
 END IF;

 OutputStream := OutputStream || TmpStr;
 PrevLastChr := SUBSTR(TmpStr, LENGTH(TmpStr), 1);

 ELSE
 -- This was original data so write it to the outputstream.
 OutputStream := OutputStream || TmpStr;

 -- Get last character of TmpStr.
 PrevLastChr := SUBSTR(TmpStr, LENGTH(TmpStr), 1);

 END IF; -- TmpStr evaluation

 END LOOP;

June 18, 2002 19

 IF PrevLastChar = ‘+’ THEN
 --Replace the last ‘F

S+’ with ‘EoT’
 OutputStream := SUBSTR(OutputStream, 1, LENGTH(OutputStream)-2) || ‘EoT’
 END IF;

END READ_LABEL;

June 18, 2002 20

	APPLICATION PROGRAM INTERFACE
	INTRODUCTION

	Table 1 – ‘F’ Data Identifier Hierarchical Level
	Identifier
	ASSUMPTIONS AND DEFINITIONS

	Table 2– ANSI MH10.8.2 Data Identifier “F” Struct
	CONSTANTS
	SUBROUTINES
	FUNCTION MAIN
	Purpose: This function is the main driver of the API. It builds a data stream of one or more shipping labels based on user input.
	Global Variables:
	PROCEDURE BUILD_LABEL
	Purpose: This procedure builds an ‘F’ data ide
	FUNCTION HIERARCHY_LEVEL_IS_LOWER
	Purpose: This function determines which of two
	This function is called by BUILD_LABEL.
	FUNCTION INCREMENT_ID
	Purpose: This function increments a 2-characte
	Description: This function accepts a 2-character

	Table 3 – Assignment Order of ‘F’ Data Identifier
	Field Range
	This function calls the function NEXT_VALUE detailed below.
	FUNCTION NEXT_VALUE
	Purpose: This function increments a single cha
	FUNCTION LAST_F_DATA_WITH_HIGHER_HL
	Purpose: This function finds and returns the l
	PROCEDURE READ_LABEL
	Purpose: This procedure reads an ‘F’ data iden

